
Computer Science

ArrayList<E> List<E>

ArrayList<String> listName; //sets aside memory to store a reference

-OR- //nothing has been constructed

List<Integer> numberListName;

numberListName List<E>

ArrayList

listName = new ArrayList<String>(); //listName refers to empty list

numberListName = new ArrayList<Integer>(); // reference to empty list

add

listName.add("George");

numberListName.add(new Integer(6));

shapeList = new ArrayList<Shape>();

shapeList.add(new Circle());

shapeList.add(new Star());

shapeList.add(1, new Triangle());

listName __________________________________

Computer Science

ArrayList

for for-each get for

for for

for (int n : nums)
{
 System.out.println(_______);
}

for (int i = 0; i < nums.size(); i++)
{
 System.out.println(___________);
}

interface java.util.List<E>

• int size()

• boolean add(E obj) // appends obj to end of list; returns true

• void add(int index, E obj) // inserts obj at position index (0 index size) ,

// moving elements at position index and higher

// to the right (adds 1 to their indices) and adjusts size

• E get(int index)

• E set(int index, E obj) // replaces the element at position index with obj

 // returns the element formerly at the specified position

• E remove(int index) // removes element from position index, moving elements

// at position index + 1 and higher to the left

// (subtracts 1 from their indices) and adjusts size

// returns the element formerly at the specified position

class java.util.ArrayList<E> implements java.util.List<E>

nums

Computer Science

List<E> listName

List<E>

ArrayList<Double>

double revenue = getIncome(dailyReceipts);

public double getIncome (List<Double> sales)

{ . . .

}

Computer Science

 ArrayList<String> items = new ArrayList<String>();

 items.add("A");

 items.add("B");

 items.add("C");

 items.add(0, "D");

 items.remove(3);

 items.add(0, "E");

 System.out.println(items);

(A) [A, B, C, E]

(B) [A, B, D, E]

(C) [E, D, A, B]

(D) [E, D, A, C]

(E) [E, D, C, B]

private ArrayList<Integer> list;

public void mystery(int n)

{

 for (int k = 0; k < n; k++)

 {

 Integer num = list.remove(0);

 list.add(num);

 }

}

list Integer

[12, 9, 7, 8, 4, 3, 6, 11, 1]

mystery(3)

(A) [12, 9, 8, 4, 3, 6, 11, 1, 7]

(B) [12, 9, 7, 8, 4, 6, 11, 1, 3]

(C) [12, 9, 7, 4, 3, 6, 11, 1, 8]

(D) [8, 4, 3, 6, 11, 1, 12, 9, 7]

(E) [1, 11, 6, 12, 9, 7, 8, 4, 3]

Computer Science

 public static void removeOdd(List<Integer> allNums)

 {

 for (int i = 0; i < allNums.size(); i++)

 {

 if (allNums.get(i).intValue() % 2 == 1)

 {

 allNums.remove(i);

 }

 }

 }

removeOdd

I. List<Integer> list = new ArrayList<Integer>();

 for (int i = 0; i < 12; i++)

 {

 list.add(new Integer(i));

 }

II. List<Integer> list = new ArrayList<Integer>();

 for (int i = 0; i < 12; i += 2)

 {

 list.add(new Integer(i));

 }

III. List<Integer> list = new ArrayList<Integer>();

 for (int i = 1; i < 12; i +=2)

 {

 list.add(i);

 }

(A) I only

(B) II only

(C) III only

(D) I and II

(E) II and III

Computer Science

 Consider the following declaration of the class NumSequence, which has a constructor that is

intended to initialize the instance variable seq to an ArrayLis t of numberOfValues

random floating-point values in the range [0.0, 1.0).

public class numSequence

{

 private List<Double> seq;

 // precondition: numberOfValues > 0

 // postcondition: seq has been initialized to an ArrayList of

 // numberOfValues elements; each contains a random

 // Double value in the range [0.0, 1.0)

 public NumSequence(int numberOfValues)

 {

 /* missing code */

 }

}

Which of these code segments could be used to replace /* missing code */ so

that the constructor will work as intended?

I. List<Double> seq = new ArrayList<Double>();

 for (int i = 0; i < numberOfValues; i++)

 {

 seq.add(new Double(Math.random()));

 }

II. seq = new ArrayList<Double>();

 for (int i = 0; i < numberOfValues; i++)

 {

 seq.add(new Double(Math.random()));

 }

III. ArrayList<Double> temp = new ArrayList<Double>();
 for(int i = 0; i < numberOfValues; i++)

 {

 temp.add(new Double(Math.random()));

 }

 seq = temp;

 (A) II only

 (B) III only

 (C) I and II only

 (D) I and III only

 (E) II and III only

Computer Science

1. An organization raises money by selling boxes of cookies. A cookie order specifies the variety of

cookie and the number of boxes ordered. The declaration of the CookieOrder class is shown below.

public class CookieOrder

{

 /** Constructs a new CookieOrder object. */

 public CookieOrder(String variety, int numBoxes)

 { /* implementation not shown */ }

 /** @return the variety of cookie being ordered

 */

 public String getVariety()

 { /* implementation not shown */ }

 /** @return the number of boxes being ordered

 */

 public int getNumBoxes()

 { /* implementation not shown */ }

 // There may be instance variables, constructors, and methods that are not shown.

}

Computer Science

The MasterOrder class maintains a list of the cookies to be purchased. The declaration of the

MasterOrder class is shown below.

public class MasterOrder

{

/** The list of all cookie orders */

private List<CookieOrder> orders;

/** Constructs a new MasterOrder object. */

public MasterOrder()

{ orders = new ArrayList<CookieOrder>(); }

/** Adds theOrder to the master order.

 * @param theOrder the cookie order to add to the master order

 */

public void addOrder(CookieOrder theOrder)

{ orders.add(theOrder); }

/** @return the sum of the number of boxes of all of the cookie orders

 */

public int getTotalBoxes()

{ /* to be implemented in part (a) */ }

/** Removes all cookie orders from the master order that have the same variety of

 * cookie as cookieVar and returns the total number of boxes that were removed.

 * @param cookieVar the variety of cookies to remove from the master order

 * @return the total number of boxes of cookieVar in the cookie orders removed

 */

public int removeVariety(String cookieVar)

{ /* to be implemented in part (b) */ }

// There may be instance variables, constructors, and methods that are not shown.

 }

Computer Science

(a) The getTotalBoxes method computes and returns the sum of the number of boxes of all

cookie orders. If there are no cookie orders in the master order, the method returns 0.

Complete method getTotalBoxes below.

/** @return the sum of the number of boxes of all of the cookie orders

 */

public int getTotalBoxes()

Computer Science

(b) The removeVariety method updates the master order by removing all of the cookie orders in

which the variety of cookie matches the parameter cookieVar. The master order may contain

zero or more cookie orders with the same variety as cookieVar. The method returns the total

number of boxes removed from the master order.

For example, consider the following code segment.

MasterOrder goodies = new MasterOrder();

goodies.addOrder(new CookieOrder("Chocolate Chip", 1));

goodies.addOrder(new CookieOrder("Shortbread", 5));

goodies.addOrder(new CookieOrder("Macaroon", 2));

goodies.addOrder(new CookieOrder("Chocolate Chip", 3));

After the code segment has executed, the contents of the master order are as shown in the

following table.

The method call goodies.removeVariety("Chocolate Chip") returns 4 because

there were two Chocolate Chip cookie orders totaling 4 boxes. The master order is modified as

shown below.

The method call goodies.removeVariety("Brownie") returns 0 and does not change

the master order.

Computer Science

Complete method removeVariety below.

/** Removes all cookie orders from the master order that have the same variety of

 * cookie as cookieVar and returns the total number of boxes that were removed.

 * @param cookieVar the variety of cookies to remove from the master order

 * @return the total number of boxes of cookieVar in the cookie orders removed

 */

public int removeVariety(String cookieVar)

Computer Science

2. A music web site keeps track of downloaded music. For each download, the sites uses a

DownloadInfo object to store a song’s title and the number of times it has been downloaded. A

partial declaration for the DownloadInfo is class is shown below.

public class DownloadInfo

{

/** Creates a new instance with the given unique title and sets the

 * number of times downloaded to 1.

 * @param title the unique title of the downloaded song

 */

public DownloadInfo(String title)

{ /* implementation not shown */ }

/** @return the title */

public String getTitle()

{ /* implementation not shown */ }

/** Increment the number times downloaded by 1 */

public void incrementTimesDownloaded()

{ /* implementation not shown */ }

// There may be instance variables, constructors, and methods that are not shown.

}

Computer Science

The list of downloaded information is stored in a MusicDownloads object. A partial declaration

for the MusicDowloads class is shown below.

public class MusicDownloads

{

 /** The list of downloaded information

 * Guaranteed not to be null and not to contain duplicate titles.

 */

 private List<DownloadInfo> downloadList;

 /** Creates the list of downloaded information */

 public MusicDownloads()

 { downloadList = new ArrayList<DownloadInfo>(); }

 /** Returns a reference to the DownloadInfo object with the requested title if it exists.

 * @param title the requested title

 * @return a reference to the DownloadInfo object with the title that matches the

 * parameter title if it exists in the list; null otherwise.

 * Postcondition: no changes were made to downloadList.
 */

 public DownloadInfo getDownloadInfo(String title)

 { /* to be implemented in part (a) */ }

 /** Updates downloadList with information from titles.

 * @param titles a list of song titles

 * Postcondition:

 * - there are no duplicate titles in downloadList.

 * - no entries were removed from downloadList.

 * - all songs in titles are represented in downloadList.

 * - for each existing entry in downloadList, the download count is

 * increased by the number of times its title appeared in titles

 * - the order of the existing entries in downloadList is not changed.

 * - the first time an object with a title from titles is added to downloadList,

 * it is added to the end of the list.

 * - new entries in downloadList appear in the same order

 * in which they appear in titles

 * - for each new entry in downloadList, the download count is equal to

 * the number of times its title appeared in titles.

 */

 public void updateDownloads(List<String> titles)

 { /* to be implemented in part (b) */ }

 // There may be instance variable, constructors, and methods that are not shown.
}

Computer Science

(a) Write the MusicDownloads method getDownloadInfo, which returns a reference to a

DownloadInfo object if an object with a title that matches the parameter title exist in the

downloadList. If no song in downloadList has a title that matches the parameter title,

the method returns null.

For example, suppose variable webMusicA refers to an instance of MusicDowloads and that

the table below represents the contents of downloadList. The list contains three

DownloadInfo objects. The object at position 0 has a title of "Hey Jude" and a download

count of 5. The object at position 1 has a title of "Soul Sister" and a download count of 3. The

object at position 2 has a title of "Aqualung" and a download count of 10.

0 1 2

"Hey Jude"

5

"Soul Sister"

3

"Aqualung"

10

The call webMusicA.getDownloadInfo("Aqualung")returns a reference to the object

in position 2 of the list.

The call webMusica.getDownloadInfo("Happy Birthday")returns null because

there are no DownloadInfo objects with that title in the list.

Class information repeated from the beginning of the question

public class DownloadInfo

public DownloadInfo(String title)

public String getTitle()

public void incrementTimesDownloaded()

public class MusicDownloads

private List<DownloadInfo> downloadList

public DownloadInfo getDownloadInfo(String title)

public void updateDownloads(List<String> titles)

WRITE YOUR ANSWER ON THE NEXT PAGE

Computer Science

Complete method getDownloadInfo below.

/** Returns a reference to the DownloadInfo object with the requested title if it exists.

 * @param title the requested title

 * @return a reference to the DownloadInfo object with the

 * title that matches the parameter title if it exists in the list;

 * null otherwise.

 * Postcondition: no changes were made to downloadList.

 */

public DownloadInfo getDownloadInfo(String title)

Computer Science

(b) Write the MusicDownloads method updateDownloads, which takes a list of song titles as

a parameter. For each title in the list, the method updates downloadList, either by

incrementing the download count if a DownloadInfo object with the same title exists, or by

adding a new DownloadInfo object with that title and a download count of 1 to the end of the

list. When a new DownloadInfo object is added to the end of the list, the order of the already

existing entries in downloadList remains unchanged.

For example, suppose variable webMusicB refers to an instance of MusicDownloads and

that the table below represents the content of the instance variable downloadList.

0 1 2

"Hey Jude"

5

"Soul Sister"

3

"Aqualung"

10

Assume that the variable List<String> songTitles has been defined and contains the

following entries.

{"Lights", "Aqualung", "Soul Sister", "Go Now", "Lights", "Soul Sister"}

The call webMusicB.updateDownloads(songTitles)results in the following

downloadList with incremented download counts for the objects with the titles of "Soul

Sister" and "Aqualung". It also has a new DownloadInfo objects with a title of "Lights" and

a download count of 2, and another DownloadInfo object with a title of "Go Now" and a

download count of 1. The order of the already existing entries remains unchanged.

0 1 2 3 4

"Hey Jude"

5

"Soul Sister"

5

"Aqualung"

11

"Lights"

2

"Go Now"

1

Class information repeated from the beginning of the question

public class DownloadInfo

public DownloadInfo(String title)

public String getTitle()

public void incrementTimesDownloaded()

public class MusicDownloads

private List<DownloadInfo> downloadList

public DownloadInfo getDownloadInfo(String title)

public void updateDownloads(List<String> titles)

Computer Science

In writing your solution, you must use the getDownloadInfo method. Assume that

getDownloadInfo works as specified, regardless of what you wrote for part (a).

Complete method updateDownloads below.

 /** Updates downloadList with information from titles.

 * @param titles a list of song titles

 * Postcondition:

 * - there are no duplicate titles in downloadList.

 * - no entries were removed from downloadList.

 * - all songs in titles are represented in downloadList.

 * - for each existing entry in downloadList, the download count is

 * increased by the number of times its title appeared in titles

 * - the order of the existing entries in downloadList is not changed.

 * - the first time an object with a title from titles is added to downloadList,

 * it is added to the end of the list.

 * - new entries in downloadList appear in the same order

 * in which they appear in titles

 * - for each new entry in downloadList, the download count is equal to

 * the number of times its title appeared in titles.
 */

 public void updateDownloads(List<String> titles)

